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ABS7RACT

In-iispaper w describAa procedure for solving the inverse scattering

problem in ultrasonic imaging.A J derivation of the method is based

anteHelmnholtz equation~ model

(1) Vu +IC2 (1+f)u - 0

it is applicable to any model for which the spacial sound pressure u- u(r,k)

satisfies an asymptotic equality of the form

(2) f (k)- log u(,k) " Jl(Eds +O(k') ,k

where k is proportional to the frequency P drites the ray path along which
* the pressure wave travels from the source point s  to the detector point Fd

and a is a positive constant. The method is based on predicting I() - fp F(-)ds

via a rational function procedure, using several values (k1 ) , #(k2) ... ,1)

The method is illustrated for the case of the Rytov approximation to (1), in which

case the paths P are straight lines. A perturbation method for correcting for

curved ray paths is also described. The algorithm can also be modified to image

materials with more complicated frequency dependent attenuation. Examples of images

reconstructed from computer sil ated data with and without Gaussian additive

noise are given. The beneficial effect of a noise tolerant first norm data fitting

algoritbm In improving image quality is sham.

Key Uords: Ultrasound, tomography, iging, Helnholtz equation, rational function,

attenuation, ultirequency, diffraction, refraction.
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1. INMDUtc AMD SU44

The metods derived in this paper are based on the Nelfioltz differential

equation mdel

(1.1) V2u+k 2 (l+f)u - 0

where u denotes the spacial sound pressure, V2 is the Laplacian operator In

3 dimensions, and

(1.2) f -() 2

In Eq. (1.2), F - (x,y,z) , co is the speed of sound in the region (usually a

liquid) surrounding the body B , k - w/c0 , where w a 2?r x (frequency) and c(F)

is the "speed" of sound at the point 7 in B . We assume that B is a subset

of a volume V , and that sound sources and detectors are located on DV , the

boundary of V . We have displayed the word "speed" in quotes above, since in the

derivation of Eq. (1.1) c(-) is indeed the speed of sound at the point F , whereas,

in real life, materials have attenuation, and therefore . f 0 . In this pPrer
-. m 
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a numrical a',-. ! ",a for reconstructing the function

(1.3) . F -

in V , based on the nodel (1.1).

The fact that the function c(F) turns out to be couplex, as well as other

criticisms of (1.1) have raised questions with regards to the validity of the

vodel (1.1), and this has led several authors [1,4] as well as somae of us [3)

to derive other models. However, under either plane wave or point source exitation,

all of these newly derived rodels including (1.1) have the cammon feature that

(1.4) )rd FJL ~l

*where u. n) is the spacial soun~d pressure and L is a path in V along which
the pressure wave travels from its source point F to the detector point Fd

While other inversion techniques are based on the particular model, the method of

this paper applies to any such model.

Although f and uk are not C functions of F in practice, and they are

therefore difficult to compute, we show that the fmnction

r) Ird
* (1.5) O(k) ,- og 

is a very smoth and slowly varying function of k on an interval (k 0 ,u ] of the

real line, where k0 > 0 . Indeed, on 1k0 ,-] , the function 40:) satisfies therelatio

* (1.6) *(k) Fds+O(k_6 ) ,k ,

where 6 is a positive constant depending only on f • In addition, althoughwe

2
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cannot give a coplete proof, we expect that O(k) is analytic and bounded in a

sector

(1.7) S (kO)k { : Ikl.k 0 . larS kIO)

and where k0  and 0 are positive constants. Recently discovered results by

approximation theory [8] have shom that such a function can be very accurately

approximated on [k0 ,=.w by a rational function of k . Thus if *(k) is knwmw

only on a subinterval of [ko] , we can expect the "o-algoritlu'(see e.g. [12])

to yield a very accurate approximation to () - f F ds

To this end, we have simulated swe tests for the case of the Rytov approxi-

mation to the solution of (1.1), taking

(1.8) ) - - 12

and when u is a plane wave. In this case it is possible [6,7] to explicitly

evaluate the Rytov approximation, Ryt[uk()] and the paths L are straight

0
lines L parallel to the incaning field u. By computing

i...
( .9) sl1k )  -" Ryt (u,( rd

at 9 equi-spaced points in the range of frequencies betwen 1 megahertz and

*,ii 4 megahertz, the P algorithm enables us to accurately couque

, b lf .7o12

(1.10) (a)  =  I da.
1JL
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This sVI.-e algorithm works well:* if the nubers #(k) can be coeputed
accurate to 4 or more sivi... cant ftiures, but breaks din at 3.. '1 , rctice , ie ect

that w will be able to measwe #(k) accurate to 3 si in'%,cant fcr.w. T.o this VAd, we

have in A ed an "L -adjustmnt" to our algorithm, vhich in effect coqutes the

limit of several rational function interpolations of *(k) , and then evaluates

the 1 mininum of these limits. This has the effect of uder-ephasizing the

larger errors of these limits, and if the #(k) are accurate to 3 sin:.icant f " Sg'es,

.e are able to caw.te #(-) accwate to 3 siniificant figures.

In order to reconstruct an ima!e fra the ON). we use standard X-ray CT

algorithms 121 which, assume that the paths L are straight lines L . While this

apprc0 cation is usually not unduly pessimistic for the case of sound weves in tissue,

it is not exact. To this end, we have introduced a numerical scheme for correcting the

* F which we constructed under the assumption that the paths are straight liners. This

*,? method is based n a discretization of the equations recently derived in [7]. While

we have included this algorithm for cmpleteness, we have not yet tested it In practice.

In the final section of this paper we illustrate a recanstruction via the

P-algoritm of the function

(1.11) -f() _

usihg simulated data obtained via the Rytov approuimaticn. We also illustrate the

result when 0.1% noise was added to the Rytov data, and finally, we illustrate the

result wh our I -adjustment algorithm is applied to the P-algoritbm results

computed using the noisy data. It is possible that we could have obtained better re-

sults by first applying the L1 umothng algorithm to the data, and then applying

the rational extrapolation algorithm. We shall investigate this procedure In the futre.

In ou simulation me are able to distinguish two objects of the fom (1.8)
separated by 2 wsvelngths.
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in ou wodel (1.1) we have assured that f In Independent f so •wi

could still rcover f if Itpfuxctional form were lom explicitly, mh as, if

O..zf (k. - a~rk 6 + '.

by suitable ncwnalizatimi of log uk() , e.g., by altering (1.5) to

(1.12) *(k) - 1 log ('')
1+ leg Uk(s)

This. tihweiuld enable us to recover

((1.13) ( ,1 s

- - Next., we could recover O(r) by sampling

(1..14) vC(k) m k8 [*(k) .

cis
o
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2. WNEGRAL EQUATION~ PFOUATI(14 OF ME HVUflOL7'Z MQnIWN

By mearis of Gren's theorem, ene can derive the :Integral equation

(2.1) - u()+ k43 JJJ 6(-')f(Cr')u(r?)dV(r?)
V

* itich is equivalent to (1.1), where

ikr

eq

(2.2) Gk~:)nr

anid whm uko n denotes the input spacial pressure wave. In practice onie usually

has point sources of the form

(2.3) 0ks -r e___
47r

in which i sdenotes a source point, although the plane wave form

*(2.4) ) -

6
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* 3. ASYMfr'I IC ESTIM7T. OF log uk,

let % be defined by either Eqs. (2.3) or (2.4). The theory of geometric

optics then iredicts that (see e.g. [3 p. 134])

(3.1) 'ukf - expfik[ J 4 ds + o(1)1) , k-

where in the case of u defined by (2.3), L denotes the ray path aienating
0

frmnr to the point Fd ,hile in the case of uk defined by (2.4), L

starts out in the direction of k at some point on the boundary of V and ends

UPat rd

Let us now assume that f 6 LiP(o)(V) , for sme > 0. We believe that in

applications we mst always have a Z 1/2 , although for purposes of deriving our

algoritm, any positive value of a will suffice. Then, upon substituting (3.1),

with Fd replaced by F into (2.1) and assuming L to be any C1 path, me find

that the o(1) term in (3.1) can be replaced by 0(1(" /2) . That is,

(3.2) )  vq{1k[ vT ds + O(k0/ 2)1 , k
UkGrs)

This result may be established via a procedure similar to that applied to the

equations (2.2) and (1.7) of [10], with m>0 , n> 0 and m+n C

7



I.- 4. ANATIC PRPEFIES OF TE SOUTMON

In this section we study the analytic properties of the solution uk of

(2.1) as a function of k , in order to show that we can perform accurate

approximation of the function s defined in (1.5) an [k0.-; .

We shall show that with defined by (2.3), the solution uk(-) of

(2.1) is a ratio of two entire functions of k . The poles of this function

occur at the points k - kt for which the hxmogeneaus equation crresponding

to (2.1) has solutions. We then show that these nuters kM carmot be real.

Let V be a bounded.region in 3 , ad let f E Lip() (V) , such that

rJm f > 0 a.e. on V , and such that f 0 on -V . Hence

(4.1) 2uk( + (k2 (1+f)]ukj -0 o,

3
.3 (4.2) ~ + k uk 0 O r C I3- V

Nw Wilco= [11 has shon that if Xm k ). 0 on R 3- V t hen any solution

' u of (4.2) must satisfy

2
(4.3) J Iku dR() 0 R O

f-R

and

m-R

'R ae ' h mm have

*: 8
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that is.

(4.6) -k2 f (1+,E) Iu I dy(nr + f Ivul dVyt) fwR dS( .

(. R r<R u-R

Let us now assume that k is real. Thien, by taking Imaginary parts of (4.6),

we get

(4.7) k2f(rMf)U I dV (r)- Dr u -EdS(r

- ai u - iku dS nr + rm(-k)
jM f r f-u

r-R r-R

By applying Schwartz's inequality to the first integral an the right hand

side, letting R , using (4.3) and (4.4), and recalling our assumption

that Tm f> 0 a.e. on Vweget

(4.8) 0 < k ( f)[ul2dV(n . kc < 0.

This contradiction proves

UM 4.1: If T, f > 0 a.e. an V then the quation

(4.9) ( ) - C' e*k l -r'

canmot have any nontrivial solutions for k real.

Indeed, atteapts at extending Lama 4.1 to coolc values of k suggest

that If we set

9
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fC -' .v ' ' - i e -

(4.10) v

IVi- dvn ,
fV

where

(4.11) P > 0 ,0 < 6 < P /IVI < 1/2

and if ' in the range -w/8 < e' < 0 is defined by

(4.12) tan 26' = P sin 2

IV I+P Cos e

then the equation (4.9) has no nontrivial solutions if k Ikle satisfies

(4.13) -e' <a <r-e'

Although we cannot prove this, we expect that the following assumption is probably

valid if the equation (4.1) has no solutions uk for which the ray paths are

trapped in V:

ASS1.?2TI 4.2: If .Tr, f > 0 in V and if (4.10) md (4.11) are satisfied

then there exists a sector

(4.14) S(koe) {k E C: ki > k0 . jarg ki 4 e)

where ko and 6 are positive numbers, such that whenever (4.9) has a nontrivial

solution uk then k Sk 0 ,e)

10
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LIA 4.3: .-.lutio u of Eq. (2.1) may be represented in the form

(4.15) uX) (k.)

where for each fixed ",X and Y are entire functions of k.

I0
PROOF: We carry out the proof only for the case of u defined by (2.3).

The proof in the case of (2.4) is similar, and we omit it.

Instead of (2.1), we consider the equation

u(k,a,r) -•

(4.16)

(41)+ k 2 J e s f(?r)u(k,a,F?)dV(r-')

We know from the theory of Fredholm integral equations (see e.g. [41) that for

- every fixed a 6 C and - (xy,z) , the solution u of Eq. (4.16) is a ratio

of two entire functions of k2 , and hence of k , i.e.,

(4.17) u k,a,r) - ,
'o.1

Y(kai)

" where X and Y in (4.17) are entire functions of k . Inspection of the

- proof of this result for the case of (4.12) shows that for fixed k ad

X and Y in (4.17) are also entire functions of a . Pence for fixed

'*" , Xc(,k,1) and Y(k,kr) are entire functions of k.

,-. 11



!DtQ 4.4: If f E Lip (V) if uk is defined by either Eqs. (2.3) or

(2.4), and if Assumption 4.2 holds, then the function * defined by (1.5)

is analytic and bounded in the sector S(k*O,) , where it satisfies the relation

(4.18) 4 (k) + ds+O(k"/ 2 ) ,k - in S(o,e)fL

PROOF: By Assumption 4.2 there are no ncntrivial solutions uk of Eq (4.9),

with k in S(o,e) . Hence the function Yk,r) In Eq. (4.15) does not

vanish if k 6 S(ko,8) . Hence *(k) is analytic in S(ko,e) . Eq. (4.18)

therefore follows fran Eq. (3.2).

'.7- 12
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5. RATIOAL APPRMMO) TIOIN PREDICaIO

In this section we shall show that we can "predict"

(5.1) fL)

using the Thiele algorithn for constructing a rational function which interpolates

*(k) . We first prove

LEMMA 5.1: let *(k) be defined as in I u 4.2. Corresponding to every integer

N > 0 , there exists a rational function

N N1
(5.2) T(k) - N N

rk N -
ok+ + .+ dN

such that

(5.3) l(k) rN(k)[ < C e, k0 <= k<

where c and C are positive constants independent of N; and where k0 is de-

fined as inLema 4.1. Indeed, for ay c 0 , wemaytake

1/2
(5.4) c - 4Ceo 1/2

where a is defined as In (3.2) and 8 as in (4.10). Then C- C(c)

PROOF: In [9) a rational function of z similar to (5.2) was costructed, for

appro tng a function q(z) on -1 < z < 1 ,where g was analytic on the unit

13



disc. A sirz1 "-"'ation of the arginmit in [9] yields (5.3) and (5.4).

The inequaity (5.3) tells us that rational functions do a osiderably better

job of approximating 0(k) than polynanials in 1/k . Fbr exaMple, if

'I "ck" 1 , C y 0 , tOmn no ratter how the constants b,.bl, ... ,, are selected,

it t

where C' is a positive constant which depends neither- on VW b, nor on F

In practice, the constant a is not known a priori. Nertheless by the
liear methods of [8,91, (5.3) is sill satisfied for sme positi,,e costans c

and C.

We note also, frm (5.1), (5.2) and (5.3), that

(56) I ds - co I C e" 12

This fact, and the fact that Lamia 5.1 tells us that 4(k) is "very nearly" a

rational f-uction, suggests that the 'Thiele rational function alporithm should

provide an effective procedure for determfdng cO

Given the data

(5.7) (k~ #j)

-here the k are distinct and real. the Thiele Algorithm for cnstrcting an

rN(k) of the form of Eq. (5.2) is described by the following equation:

14
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0 - (k ) j ...

m j 9*~z...,2-

1 1-2 ki+j i j 0,1,...,2N-i

=.- iI + . 2,3,...,2N

Then the rational function rN(k) of the fozm (5.2) which interpolates o at

the points kj may be computed via its continued fraction representation

0Ik - k2N

(5.9) rNcPO + k- 0 k k

in particular, w have

(5.10) co  10-

215



6. L OF N

The alorilthm (5.8) for predicting f(-) has been tested an the function (1.9),

under the assuaption that we can compute *(k) in the range of frequencies betweem

1 and 4 megahertz. Indeed, taking N as low as 3 and evaluating f(k)

accurate to 7 decimals we ca compute the integral in (1.10) to 6 decimals

accuracy. Our test runs have shown however, that while (5.8) still yields reliable

results when the numbers *(kj) are rounded to 4 decimals accuracy, it fails

"hen they are rounded to 3 . We have found that this problem can be remedied by

taking the (usual) XI minimum of these. That is if

{c(m) }
rn-1

are H such predictions obtained by applying (5.8) to M different sets of data

of the form (5.7), the 11 minimum of the c(M) is the number a which

minimizes

(6.1) S (a) m 1 Ic 0(M -a

In this way, we are able to use noisy data of the form (5.7) which is accurate to

anly 3 decimals to predict *(a) = a accurate to 3 decimals.

O (Mn)
In the case when the C are real, it is easily seen that minaS(a) -i S(c)=rain(M) 0o

Hence, even for general ccmplex € m) , it is convenient to replace the exact solu-

tion a of (6.1) by the approximation, a a +i s, where a and 8 are real, ind

* where
- Pre€' )  S(1)(o) c( ))- a' _ S ( 0m))C 0 S' (a -- -l I e  > 0 at, 0

*(6.2)

C cl .(2' i.8 s W (2) pT)

16



7. CRRECrICN MR RAY REFRACON

Our experience has shown that the ray paths L of sound waves in tissue areusually

very nearly straight lines L . We may thus use the equation derived in [7] to

derive a correction on the F F .where F is constructed under the assumption

that the paths L are straight lines L . To this end, if is (0,0,0)

d (t0,0)

(7.1) FL - J F ds - F(x,Ec(x),CV,(x)) V-+C2'(x) 2 + E2'(x)2  dx
L 0

that is, L is the path

(7.2) L - {(xy,z): y" c(x) , z - O(x) ,0 < x R ,

and

(7.3) F -

In the notation of [7], we write

(7.4) F - 1+th

:Li.e.

(7.5) ch - AT- .

17
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In ultrasonic tomography Icr - col Ic01 - 1/10 s so that Ifi 1 1/5

hence assumng that Ih I 1 , we my assume the relatica I . 1/10

n order to reconstruct F via straight line vethods, we would 1lie tok1m

(7.6) FL - F(xo.O)dx F "fo L
To this end, the following equations are derived in [71

(7.7) C - J 2 (Oy+%h 12 12 3 x+0J

where

h hy(x,y,z) y

y z 0- -
(7.8)

h. hiz(xy,) ly - -o

as well as the equations

(7.9) 4" - h , " h,

which are solved, subject to the boundary conditions

(7.10) 0(0) M() - *(0) - ( ) - 0

We r apply these results to our case.

Asming that the paths are straight line,, we can recon trt an F, such

that

tl18
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A .

(7.11) FL - ; Fo  - 0(xo,0)

Wwe d likuto kno F. such that

(7.12) FL " JFOd ; F0  - F(x,0,0)

Mean, w have

(7.13) FL - FL e

where, upon ignoring terms of order E3 , and taking e 1 (inplying a corresponding

reduction in the magnitudes of the corresponding quantities),

(7.14) 0  " io + -r 0' W I

where by (7.8), (7.9) and (7.10)

*0 (71W 4'(x - 1 t-IL)Fy(t1.0.)dt + J FY(t.O.0)dt(7.15) 0.

*I~ J (t-I)Fz(t,0.0)dt + JO f 2 (t,0,0)dt

let us now derive a numerical 9cbme for making the correction (7.14). To

thsend we assume that F is knmo on a 3-dnmusional pixel array with side h,

w hose centers are located at the points

I J K 1
! :

(7.16) f1(x,yjzk)= ( "  - mh (k- h).,i- jo -1 k,.l J -1 k-,1-:

Ve then use the approximations

19
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F -y ~ ~ Fj + 1k Fi Ik
ijk Ty (xi Y±iZk) Zk

ijk 2k~ -

rX
.1 ~ zkdt h jk+h 2 Fi + h Fik Aj

(7.17)

j2 F(tyzk)dt + 1
0 & 7 h ''jk .2 jk hF jk j

1m- x hj

(t-Ix) F(t~yj.zk)dt -r {(m-j)h-t 1 IF2  C
,x- o x mj1

1 1 2

(7.8)Fijk 7ijk 7 (Ajk Cik) + (EjIk Dik)

After making such an "x-sweep" for each j and k ,we thin ake a siilar

',y-sweep", and repeat, unil the changes in the numbers "ikt becxm negligible.

2 0



8. AN EX44L

In hi section we illustrate the application of the formulas developed In

Sectios 5-6 of the paper via a simulation carried out for the case of the Rytov

odel. The Rytov approximation u(r) m Ryt. (u()) is often made for the solutim

to ( .1) .- '

mWk
(8.1) Ryt.{u(r)

(8.2) kp( ) -I + -

Our simulation was carried out for the case of

(8.3) - bj 2

since it is possible to explicitly evaluate W when f has the foam (8.3) E10].

In (8.3) the points ar wlocated at Fjf -OY0 *Whre In ts of milli-

meters, y 1 -3.75, y2 -0,y 3-- 2.5,y--4.375. 1,smzrber b umsschosa

so that each Ciassian

bad a ftll width at half uoaxi eqal to I am, I.e.. abou 2 wmlwgt at

a fr*quucy of 2.5 Mi (meghertz). and sound speed CO B 50 u/Sec.

All recwasu-timns e based m the famini

21
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(8.4) 2i ( rf ()ds

where L is a straight line path[10], and where the nunbers (8.4) were obtained by

using the algoritbms (5.8)-(5.10) by taking 9 values of k corresponding to

9 equi-spaced frequencies in the range of 1 to 4 HI

Figure 8.1 is a picture of the exact object digitized to a 41 x 41 pixel

array, each pixel having dimension .3125 m x .3125 uam.

The pictures in Figures 8.2, 8.3 and 8.4 (as well as Figure 8.1) were obtained

from reconstructions carried out in the Ultrasound Laboratory at the tniversity of

Utah, and based on the methods of this paper. The pixel array in each dimension

is the same as in Figure 8.1. The projection data was obtained from 30 views over

180 degrees. The line of detection was positioned at 8 cm from the center of

rotation.

7he picture in Figure 8.2 was obtained by applying the algorithms (5-7)-(5.10)

to data {k , 2Wk (n / (ik 9 accurate to 7 decimals. It deviates from the
-J,

exact object at each and, since there the value of f n) In (8.3) was very 9=1l,

so that the resulting sigificant figure accuracy in the data was less than 4

places. The rational function algorithm was therefore less accurate at these ends.

The picture in Figue 8.3 is a reconstruction obtained as in Figure 8.2, but

by adding random noise with normal distribution and standard deviation of 0.1% to

the simulated data.

Figure 8.4 is a picture of the result of the reconstruction of the simulated data

from 10 set of 9 frequencies eqully spaced in the range from 1 to 4 .44.

Random noise with normal distribution nd standard deviation of 0.1% was again added

to the data as for the data of Figure 8.3, but here the first nom procedure of Eqs.

(6-2) was used on the predictions c( 0 ) to obtain more accurate predictions.
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FIGURE 8.2: Reconstruction of Test Object from
Rational Function Prediction in the
Absence of Noise.

The reconstructed object is almost of the same quality as the original
test object. Scattering data were generated by application of the Rytov
approximation scattering integral. Projection data were made from the rational
function prediction using nine equally spaced frequencies from 1 to 4 MHz. Re-
construction from the extrapolated data was done using the ART algorithm along
straight lines.

.- ,-, -,- -. , .- ---, V , -..- ,-. -. " .' , .-.". -' .. .-' .'..-' -., .', i ...'. i • . .. .--



FIGURE 8.3: Reconstruction of Test Object in
the Presence of Random Noise Without
Data Condition.

Random noise with a normal distribution of mean zero and a standard
deviation of 0.1% was added to the simulated data at each frequency. The
rational function extrapolation was then obtained from this noisy data and,
the reconstruction was carried out in the same manner as for Fig. 8.2.
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FIGURE 8.4: Reconstruction of Test Object in the
Presence of Noise Using the Data Con-
ditioning Algorithm of Equation (6.2).

Scattering data was simulated for 10 different sets of 9 uniformly
spaced frequencies from 1-4 MHx and random noise with a mean of zero and a
standard deviation of 0.7% was added to all of the data. The rational
fuhction extrapolation was applied to each of the ten sets of frequencies,
and then the first norm procedure of Eq(6.2) was applied to the extrapola-
tions. Finally, the reconstruction algorithm was applied to the averaged
data in the same manner as the previous two figures.
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